Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and DiOutput
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 61 42 63 122 7
Sample Output
23
Source
dp[i][j]代表当背包体积为j时,前i件物品可以达到的最大价值。
当i为0时,前0件物品价值只能是0。所以第一行全是0;当第i件物品重量大于j时,dp[i][j] = dp[i - 1][j],否则dp[i][j] = max(dp[i - 1][j],
dp[i - 1][j - w[i] ] + v[i])。
为了优化内存,可以使用一维数组,但是j要从M递减到1,否则从1到M的话前面的会覆盖掉后面要用到的值。
1 #include2 #include 3 #include 4 using namespace std; 5 6 vector dp; 7 8 int main() { 9 int N, M, i, j;10 cin >> N >> M;11 vector W(N + 1), D(N + 1);12 for (i = 1; i <= N; i++)13 cin >> W[i] >> D[i];14 dp.resize(M + 1);15 for (i = 1; i <= N; i++) {16 for (j = M; j >= 1; j--) {17 if (W[i] <= j)18 dp[j] = max(dp[j], dp[j - W[i]] + D[i]);19 }20 }21 cout << dp[M] << endl;22 return 0;23 }